Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.148
Filter
1.
Neurology ; 102(10): e209206, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38710006

ABSTRACT

BACKGROUND AND OBJECTIVES: Clinical trials in Duchenne muscular dystrophy (DMD) require 3-6 months of stable glucocorticoids, and the primary outcome is explored at 48-52 weeks. The factors that influence the clinical outcome assessment (COA) trajectories soon after glucocorticoid initiation are relevant for the design and analysis of clinical trials of novel drugs. We describe early COA trajectories, associated factors, and the time from glucocorticoid initiation to COA peak. METHODS: This was a prospective 18-month analysis of the Finding the Optimum Corticosteroid Regimen for Duchenne Muscular Dystrophy study. Four COAs were investigated: rise from supine velocity (RFV), 10-meter walk/run velocity (10MWRV), North Star Ambulatory Assessment (NSAA) total score, and 6-minute walk test distance (6MWT). The relationships of baseline age (4-5 vs 6-7 years), COA baseline performance, genotype, and glucocorticoid regimen (daily vs intermittent) with the COA trajectories were evaluated using linear mixed-effects models. RESULTS: One hundred ninety-six glucocorticoid-naïve boys with DMD aged 4-7 years were enrolled. The mean age at baseline was 5.9 ± 1.0 years, 66% (n = 130) were on daily regimens, 55% (n = 107) showed a 6MWT distance >330 metres; 41% (n = 78) showed RFV >0.2 rise/s; 76% (n = 149) showed 10MWRV >0.142 10m/s, and 41.0% (n = 79) showed NSAA total score >22 points. Mean COA trajectories differed by age at glucocorticoid initiation (p < 0.01 for RFV, 10MWRV, and NSAA; p < 0.05 for 6MWT) and regimen (p < 0.01 for RFV, 10MWRV, and NSAA). Boys younger than 6 years reached their peak performance 12-18 months after glucocorticoid initiation. Boys aged 6 years or older on a daily regimen peaked between months 9 and 12 and those on an intermittent regimen by 9 months. The baseline COA performance was associated with the NSAA (p < 0.01) and the 6MWT trajectory in boys younger than 6 years on a daily regimen (p < 0.01). Differences in the mean trajectories by genotype were not significant. DISCUSSION: Glucocorticoid regimen, age, duration of glucocorticoid exposure, and baseline COA performance need to be considered in the design and analysis of clinical trials in young boys with DMD.


Subject(s)
Glucocorticoids , Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Male , Glucocorticoids/administration & dosage , Glucocorticoids/therapeutic use , Child, Preschool , Child , Prospective Studies , Treatment Outcome , Outcome Assessment, Health Care , Age Factors
2.
J Neuromuscul Dis ; 11(3): 701-714, 2024.
Article in English | MEDLINE | ID: mdl-38640165

ABSTRACT

Background: Stride Velocity 95th Centile (SV95C) is the first wearable device-derived clinical outcome assessment (COA) to receive European Medicines Agency (EMA) qualification as a primary endpoint in ambulant patients with Duchenne muscular dystrophy (DMD) aged ≥4 years. Objective: To compare SV95C-in its first-ever clinical trial application as a secondary endpoint-with established motor function COAs used in the trial (Four-Stair Climb [4SC] velocity, North Star Ambulatory Assessment [NSAA], and Six-Minute Walk Distance [6MWD]). Methods: SV95C was a secondary endpoint in a subset (n = 47) of participants in the SPITFIRE/WN40227 trial of taldefgrobep alfa, which was discontinued due to lack of clinical benefit. Participants in the ≤48-week SV95C sub-study were 6-11 years old and received corticosteroids for ≥6 months pre-treatment. Pearson correlations were used to compare SV95C with the other COAs. Responsiveness and changes over time were respectively assessed via standardized response means (SRMs) based on absolute changes and mixed models for repeated measures. Results: SV95C change at Week 24 was -0.07 m/s, with limited variability (standard deviation: 0.16, n = 27). The SRM for SV95C indicated moderate responsiveness to clinical change at the earliest timepoint (Week 12, n = 46), while those of the other COAs did not indicate moderate responsiveness until Week 36 (6MWD, n = 33) or Week 48 (4SC velocity, n = 20; NSAA total score, n = 20). Baseline correlations between SV95C and other COAs were strong (r = 0.611-0.695). Correlations between SV95C change from baseline to Week 48 and changes in other COAs were moderate to strong (r = 0.443-0.678).∥. Conclusions: Overall, SV95C demonstrated sensitivity to ambulatory decline over short intervals, low variability, and correlation with established COAs. Although the negative trial precluded demonstration of SV95C's sensitivity to drug effect, these findings support the continued use of SV95C in DMD clinical trials.


Subject(s)
Muscular Dystrophy, Duchenne , Walk Test , Walking , Humans , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/drug therapy , Child , Male , Walking/physiology , Outcome Assessment, Health Care , Wearable Electronic Devices , Female
3.
Eur J Neurol ; 31(6): e16267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556893

ABSTRACT

BACKGROUND AND PURPOSE: The transition to adult services, and subsequent glucocorticoid management, is critical in adults with Duchenne muscular dystrophy. This study aims (1) to describe treatment, functional abilities, respiratory and cardiac status during transition to adulthood and adult stages; and (2) to explore the association between glucocorticoid treatment after loss of ambulation (LOA) and late-stage clinical outcomes. METHODS: This was a retrospective single-centre study on individuals with Duchenne muscular dystrophy (≥16 years old) between 1986 and 2022. Logistic regression, Cox proportional hazards models and survival analyses were conducted utilizing data from clinical records. RESULTS: In all, 112 individuals were included. Mean age was 23.4 ± 5.2 years and mean follow-up was 18.5 ± 5.5 years. At last assessment, 47.2% were on glucocorticoids; the mean dose of prednisone was 0.38 ± 0.13 mg/kg/day and of deflazacort 0.43 ± 0.16 mg/kg/day. At age 16 years, motor function limitations included using a manual wheelchair (89.7%), standing (87.9%), transferring from a wheelchair (86.2%) and turning in bed (53.4%); 77.5% had a peak cough flow <270 L/min, 53.3% a forced vital capacity percentage of predicted <50% and 40.3% a left ventricular ejection fraction <50%. Glucocorticoids after LOA reduced the risk and delayed the time to difficulties balancing in the wheelchair, loss of hand to mouth function, forced vital capacity percentage of predicted <30% and forced vital capacity <1 L and were associated with lower frequency of left ventricular ejection fraction <50%, without differences between prednisone and deflazacort. Glucocorticoid dose did not differ by functional, respiratory or cardiac status. CONCLUSION: Glucocorticoids after LOA preserve late-stage functional abilities, respiratory and cardiac function. It is suggested using functional abilities, respiratory and cardiac status at transition stages for adult services planning.


Subject(s)
Glucocorticoids , Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Male , Adult , Glucocorticoids/therapeutic use , Young Adult , Retrospective Studies , Adolescent , Female , Pregnenediones/therapeutic use , Prednisone/therapeutic use , Mobility Limitation , Cohort Studies , Heart/drug effects , Heart/physiopathology
5.
J Neuromuscul Dis ; 11(3): 579-612, 2024.
Article in English | MEDLINE | ID: mdl-38669554

ABSTRACT

Objective: The objective of this study was to describe predictors of loss of ambulation in Duchenne muscular dystrophy (DMD). Methods: This systematic review and meta-analysis included searches of MEDLINE ALL, Embase, and the Cochrane Database of Systematic Reviews from January 1, 2000, to December 31, 2022, for predictors of loss of ambulation in DMD. Search terms included "Duchenne muscular dystrophy" as a Medical Subject Heading or free text term, in combination with variations of the term "predictor". Risk of bias was assessed using the Newcastle-Ottawa Scale. We performed meta-analysis pooling of hazard ratios of the effects of glucocorticoids (vs. no glucocorticoid therapy) by fitting a common-effect inverse-variance model. Results: The bibliographic searches resulted in the inclusion of 45 studies of children and adults with DMD from 17 countries across Europe, Asia, and North America. Glucocorticoid therapy was associated with delayed loss of ambulation (overall meta-analysis HR deflazacort/prednisone/prednisolone: 0.44 [95% CI: 0.40-0.48]) (n = 25 studies). Earlier onset of first signs or symptoms, earlier loss of developmental milestones, lower baseline 6MWT (i.e.,<350 vs. ≥350 metres and <330 vs. ≥330 metres), and lower baseline NSAA were associated with earlier loss of ambulation (n = 5 studies). Deletion of exons 3-7, proximal mutations (upstream intron 44), single exon 45 deletions, and mutations amenable of skipping exon 8, exon 44, and exon 53, were associated with prolonged ambulation; distal mutations (intron 44 and downstream), deletion of exons 49-50, and mutations amenable of skipping exon 45, and exon 51 were associated with earlier loss of ambulation (n = 13 studies). Specific single-nucleotide polymorphisms in CD40 gene rs1883832, LTBP4 gene rs10880, SPP1 gene rs2835709 and rs11730582, and TCTEX1D1 gene rs1060575 (n = 7 studies), as well as race/ethnicity and level of family/patient deprivation (n = 3 studies), were associated with loss of ambulation. Treatment with ataluren (n = 2 studies) and eteplirsen (n = 3 studies) were associated with prolonged ambulation. Magnetic resonance biomarkers (MRI and MRS) were identified as significant predictors of loss of ambulation (n = 6 studies). In total, 33% of studies exhibited some risk of bias. Conclusion: Our synthesis of predictors of loss of ambulation in DMD contributes to the understanding the natural history of disease and informs the design of new trials of novel therapies targeting this heavily burdened patient population.


Subject(s)
Glucocorticoids , Latent TGF-beta Binding Proteins , Muscular Dystrophy, Duchenne , Muscular Dystrophy, Duchenne/drug therapy , Humans , Glucocorticoids/therapeutic use , Walking , Pregnenediones/therapeutic use
6.
Lancet Neurol ; 23(4): 393-403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508835

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy, the most common childhood muscular dystrophy, is caused by dystrophin deficiency. Preclinical and phase 2 study data have suggested that givinostat, a histone deacetylase inhibitor, might help to counteract the effects of this deficiency. We aimed to evaluate the safety and efficacy of givinostat in the treatment of Duchenne muscular dystrophy. METHODS: This multicentre, randomised, double-blind, placebo-controlled, phase 3 trial was done at 41 tertiary care sites in 11 countries. Eligible participants were ambulant, male, and aged at least 6 years, had a genetically confirmed diagnosis of Duchenne muscular dystrophy, completed two four-stair climb assessments with a mean of 8 s or less (≤1 s variance), had a time-to-rise of at least 3 s but less than 10 s, and had received systemic corticosteroids for at least 6 months. Participating boys were randomly assigned (2:1, allocated according to a list generated by the interactive response technology provider) to receive either oral givinostat or matching placebo twice a day for 72 weeks, stratified by concomitant steroid use. Boys, investigators, and site and sponsor staff were masked to treatment assignment. The dose was flexible, based on weight, and was reduced if not tolerated. Boys were divided into two groups on the basis of their baseline vastus lateralis fat fraction (VLFF; measured by magnetic resonance spectroscopy): group A comprised boys with a VLFF of more than 5% but no more than 30%, whereas group B comprised boys with a VLFF of 5% or less, or more than 30%. The primary endpoint compared the effects of givinostat and placebo on the change in results of the four-stair climb assessment between baseline and 72 weeks, in the intention-to-treat, group A population. Safety was assessed in all randomly assigned boys who received at least one dose of study drug. When the first 50 boys in group A completed 12 months of treatment, an interim futility assessment was conducted, after which the sample size was adapted using masked data from the four-stair climb assessments. Furthermore, the starting dose of givinostat was reduced following a protocol amendment. This trial is registered with ClinicalTrials.gov, NCT02851797, and is complete. FINDINGS: Between June 6, 2017, and Feb 22, 2022, 359 boys were assessed for eligibility. Of these, 179 were enrolled into the study (median age 9·8 years [IQR 8·1-11·0]), all of whom were randomly assigned (118 to receive givinostat and 61 to receive placebo); 170 (95%) boys completed the study. Of the 179 boys enrolled, 120 (67%) were in group A (81 givinostat and 39 placebo); of these, 114 (95%) completed the study. For participants in group A, comparing the results of the four-stair climb assessment at 72 weeks and baseline, the geometric least squares mean ratio was 1·27 (95% CI 1·17-1·37) for boys receiving givinostat and 1·48 (1·32-1·66) for those receiving placebo (ratio 0·86, 95% CI 0·745-0·989; p=0·035). The most common adverse events in the givinostat group were diarrhoea (43 [36%] of 118 boys vs 11 [18%] of 61 receiving placebo) and vomiting (34 [29%] vs 8 [13%]); no treatment-related deaths occurred. INTERPRETATION: Among ambulant boys with Duchenne muscular dystrophy, results of the four-stair climb assessment worsened in both groups over the study period; however, the decline was significantly smaller with givinostat than with placebo. The dose of givinostat was reduced after an interim safety analysis, but no new safety signals were reported. An ongoing extension study is evaluating the long-term safety and efficacy of givinostat in patients with Duchenne muscular dystrophy. FUNDING: Italfarmaco.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Male , Child , Female , Muscular Dystrophy, Duchenne/drug therapy , Treatment Outcome , Carbamates/adverse effects , Adrenal Cortex Hormones/therapeutic use , Double-Blind Method
7.
EMBO Mol Med ; 16(4): 1027-1045, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448545

ABSTRACT

Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.


Subject(s)
Exosomes , Muscular Dystrophy, Duchenne , Animals , Mice , Dystrophin/genetics , Mice, Inbred mdx , Exosomes/metabolism , Morpholinos/metabolism , Morpholinos/pharmacology , Morpholinos/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides/metabolism , Oligonucleotides/therapeutic use
9.
JAMA ; 331(13): 1151-1153, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38466271

ABSTRACT

This study estimates public and private spending on genetically targeted treatments for Duchenne muscular dystrophy during years in which the drugs were marketed without completed confirmatory studies.


Subject(s)
Molecular Targeted Therapy , Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/economics , Molecular Targeted Therapy/economics
10.
Muscle Nerve ; 69(5): 604-612, 2024 May.
Article in English | MEDLINE | ID: mdl-38511270

ABSTRACT

INTRODUCTION/AIMS: Duchenne muscular dystrophy (DMD) presents with skeletal muscle weakness, followed by cardiorespiratory involvement. The need for longitudinal data regarding DMD that could serve as a control for determining treatment efficacy in clinical trials has increased notably. The present study examined the longitudinal data of Japanese DMD patients collectively and assessed individual patients with pathogenic variants eligible for exon-skipping therapy. METHODS: Patients with DMD who visited Kobe University Hospital between March 1991 and March 2019 were enrolled. Data between the patients' first visit until age 20 years were examined. RESULTS: Three hundred thirty-seven patients were included. Serum creatine kinase levels showed extremely high values until the age of 6 years and a rapid decline from ages 7-12 years. Both the median 10-m run/walk velocity and rise-from-floor velocity peaked at the age of 4 years and declined with age. The values for respiratory function declined from the age of 11 years. The median left ventricular ejection fraction was >60% until the age of 12 years and rapidly declined from ages 13-15 years. Examination of the relationship between pathogenic variants eligible for exon-skipping therapy and longitudinal data revealed no characteristic findings. DISCUSSION: We found that creatine kinase levels and motor, respiratory, and cardiac functions each exhibited various changes over time. These findings provide useful information about the longitudinal data of several outcome measures for patients with DMD not receiving corticosteroids. These data may serve as historical controls in comparing the natural history of DMD patients not on regular steroid use in appropriate clinical trials.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Young Adult , Adult , Child , Child, Preschool , Muscular Dystrophy, Duchenne/drug therapy , Stroke Volume , Ventricular Function, Left , Adrenal Cortex Hormones/therapeutic use , Creatine Kinase
11.
Amino Acids ; 56(1): 21, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461423

ABSTRACT

Metformin (N,N-dimethylbiguanide), an inhibitor of gluconeogenesis and insulin sensitizer, is widely used for the treatment of type 2 diabetes. In some patients with renal insufficiency, metformin can accumulate and cause lactic acidosis, known as metformin-associated lactic acidosis (MALA, defined as lactate ≥ 5 mM, pH < 7.35, and metformin concentration > 38.7 µM). Here, we report on the post-translational modification (PTM) of proline (Pro) to 4-hydroxyproline (OH-Pro) in metformin-associated lactic acidosis and in metformin-treated patients with Becker muscular dystrophy (BMD). Pro and OH-Pro were measured simultaneously by gas chromatography-mass spectrometry before, during, and after renal replacement therapy in a patient admitted to the intensive care unit (ICU) because of MALA. At admission to the ICU, plasma metformin concentration was 175 µM, with a corresponding lactate concentration of 20 mM and a blood pH of 7.1. Throughout ICU admission, the Pro concentration was lower compared to healthy controls. Renal excretion of OH-Pro was initially high and decreased over time. Moreover, during the first 12 h of ICU admission, OH-Pro seems to be renally secreted while thereafter, it was reabsorbed. Our results suggest that MALA is associated with hyper-hydroxyprolinuria due to elevated PTM of Pro to OH-Pro by prolyl-hydroxylase and/or inhibition of OH-Pro metabolism in the kidneys. In BMD patients, metformin, at the therapeutic dose of 3 × 500 mg per day for 6 weeks, increased the urinary excretion of OH-Pro suggesting elevation of Pro hydroxylation to OH-Pro. Our study suggests that metformin induces specifically the expression/activity of prolyl-hydroxylase in metformin intoxication and BMD.


Subject(s)
Acidosis, Lactic , Diabetes Mellitus, Type 2 , Metformin , Muscular Dystrophy, Duchenne , Humans , Metformin/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Acidosis, Lactic/chemically induced , Acidosis, Lactic/therapy , Hydroxyproline , Gas Chromatography-Mass Spectrometry , Proline , Hydroxylation , Muscular Dystrophy, Duchenne/drug therapy , Lactic Acid , Mixed Function Oxygenases/therapeutic use , Hypoglycemic Agents/adverse effects
12.
Int Heart J ; 65(2): 211-217, 2024.
Article in English | MEDLINE | ID: mdl-38556332

ABSTRACT

Duchenne muscular dystrophy (DMD) is an intractable X-linked myopathy caused by dystrophin gene mutations. Patients with DMD suffer from progressive muscle weakness, inevitable cardiomyopathy, increased heart rate (HR), and decreased blood pressure (BP). The aim of this study was to clarify the efficacy and tolerability of ivabradine treatment for DMD cardiomyopathy.A retrospective analysis was performed in 11 patients with DMD, who received ivabradine treatment for more than 1 year. Clinical results were analyzed before (baseline), 6 months after, and 12 months after the ivabradine administration.The initial ivabradine dose was 2.0 ± 1.2 mg/day and the final dose was 5.6 ± 4.0 mg/day. The baseline BP was 95/64 mmHg. A non-significant BP decrease to 90/57 mmHg was observed at 1 month but it recovered to 97/62 mmHg at 12 months after ivabradine administration. The baseline HR was 93 ± 6 bpm and it decreased to 74 ± 12 bpm at 6 months (P = 0.011), and to 77 ± 10 bpm at 12 months (P = 0.008). A linear correlation (y = 2.2x + 5.1) was also observed between the ivabradine dose (x mg/day) and HR decrease (y bpm). The baseline LVEF was 38 ± 12% and it significantly increased to 42 ± 9% at 6 months (P = 0.011) and to 41 ± 11% at 12 months (P = 0.038). Only 1 patient with the lowest BMI of 11.0 kg/m2 and BP of 79/58 mmHg discontinued ivabradine treatment at 6 months, while 1-year administration was well-tolerated in the other 10 patients.Ivabradine decreased HR and increased LVEF without lowering BP, suggesting it can be a treatment option for DMD cardiomyopathy.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Humans , Ivabradine/therapeutic use , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Retrospective Studies , Cardiomyopathies/complications , Cardiomyopathies/drug therapy , Dystrophin/genetics
13.
Int J Exp Pathol ; 105(2): 75-85, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38477495

ABSTRACT

Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to a deficiency in dystrophin production and consequent progressive degeneration of skeletal muscle fibres, through oxidative stress and an exacerbated inflammatory process. The flavonoid trilobatin (TLB) demonstrates antioxidant and anti-inflammatory potential. Its high safety profile and effective action make it a potent therapy for the process of dystrophic muscle myonecrosis. Thus, we sought to investigate the action of TLB on damage in a DMD model, the mdx mouse. Eight-week-old male animals were treated with 160 mg/kg/day of trilobatin for 8 weeks. Control animals were treated with saline. Following treatment, muscle strength, serum creatine kinase (CK) levels, histopathology (necrotic myofibres, regenerated fibres/central nuclei, Feret's diameter and inflammatory area) and the levels of catalase and NF-κB (western blotting) of the quadriceps (QUA), diaphragm (DIA) and tibialis anterior (TA) muscles were measured. TLB was able to significantly increase muscle strength and reduce serum CK levels in dystrophic animals. The QUA of mdx mice showed a reduction in catalase and the number of fibres with a centralized nucleus after treatment with TLB. In the DIA of dystrophic animals, TLB reduced the necrotic myofibres, inflammatory area and NF-κB and increased the number of regenerated fibres and the total fibre diameter. In TA, TLB increased the number of regenerated fibres and reduced catalase levels in these animals. It is concluded that in the mdx experimental model, treatment with TLB was beneficial in the treatment of DMD.


Subject(s)
Flavonoids , Muscular Dystrophy, Duchenne , Polyphenols , Mice , Animals , Male , Muscular Dystrophy, Duchenne/drug therapy , Catalase , Mice, Inbred mdx , NF-kappa B , Muscle, Skeletal/pathology
14.
PLoS One ; 19(3): e0300006, 2024.
Article in English | MEDLINE | ID: mdl-38498472

ABSTRACT

PURPOSE: Considering the difficulties and challenges in Duchenne muscular dystrophy (DMD) treatment, such as the adverse effects of glucocorticoids, which are the main medical prescription used by dystrophic patients, new treatment concepts for dystrophic therapy are very necessary. Thus, in this study, we explore the effects of photobiomodulation (PBM; a non-invasive therapy) and Idebenone (IDE) treatment (a potent antioxidant), applied alone or in association, in dystrophic muscle cells and the quadriceps muscle, with special focus on autophagy and regenerative pathways. METHODS: For the in vitro studies, the dystrophic primary muscle cells received 0.5J LEDT and 0.06µM IDE; and for the in vivo studies, the dystrophic quadriceps muscle received 3J LEDT and the mdx mice were treated with 200mg/kg IDE. RESULTS: LEDT and IDE treatment modulate autophagy by increasing autophagy markers (SQSTM1/p62, Beclin and Parkin) and signaling pathways (AMPK and TGF-ß). Concomitantly, the treatments prevented muscle degeneration by reducing the number of IgG-positive fibers and the fibers with a central nucleus; decreasing the fibrotic area; up-regulating the myogenin and MCH-slow levels; and down-regulating the MyoD and MHC-fast levels. CONCLUSION: These results suggest that LEDT and IDE treatments enhance autophagy and prevented muscle degeneration in the dystrophic muscle of the experimental model. These findings illustrate the potential efficacy of LEDT and IDE treatment as an alternative therapy focused on muscle recovery in the dystrophic patient.


Subject(s)
Muscle, Skeletal , Muscular Dystrophy, Duchenne , Ubiquinone/analogs & derivatives , Animals , Mice , Humans , Muscle, Skeletal/metabolism , Mice, Inbred mdx , AMP-Activated Protein Kinases/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Autophagy , Disease Models, Animal
15.
Exp Mol Med ; 56(4): 904-921, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38556548

ABSTRACT

Sarcopenia, the progressive decline in skeletal muscle mass and function, is observed in various conditions, including cancer and aging. The complex molecular biology of sarcopenia has posed challenges for the development of FDA-approved medications, which have mainly focused on dietary supplementation. Targeting a single gene may not be sufficient to address the broad range of processes involved in muscle loss. This study analyzed the gene expression signatures associated with cancer formation and 5-FU chemotherapy-induced muscle wasting. Our findings suggest that dimenhydrinate, a combination of 8-chlorotheophylline and diphenhydramine, is a potential therapeutic for sarcopenia. In vitro experiments demonstrated that dimenhydrinate promotes muscle progenitor cell proliferation through the phosphorylation of Nrf2 by 8-chlorotheophylline and promotes myotube formation through diphenhydramine-induced autophagy. Furthermore, in various in vivo sarcopenia models, dimenhydrinate induced rapid muscle tissue regeneration. It improved muscle regeneration in animals with Duchenne muscular dystrophy (DMD) and facilitated muscle and fat recovery in animals with chemotherapy-induced sarcopenia. As an FDA-approved drug, dimenhydrinate could be applied for sarcopenia treatment after a relatively short development period, providing hope for individuals suffering from this debilitating condition.


Subject(s)
Autophagy , Transcriptome , Animals , Autophagy/drug effects , Mice , Humans , Protein Biosynthesis/drug effects , Disease Models, Animal , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Gene Expression Profiling , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/pathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology
16.
Trends Mol Med ; 30(3): 278-294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408879

ABSTRACT

Earlier evidence that targeting the balance between histone acetyltransferases (HATs) and deacetylases (HDACs), through exposure to HDAC inhibitors (HDACis), could enhance skeletal myogenesis, prompted interest in using HDACis to promote muscle regeneration. Further identification of constitutive HDAC activation in dystrophin-deficient muscles, caused by dysregulated nitric oxide (NO) signaling, provided the rationale for HDACi-based therapeutic interventions for Duchenne muscular dystrophy (DMD). In this review, we describe the molecular, preclinical, and clinical evidence supporting the efficacy of HDACis in countering disease progression by targeting pathogenic networks of gene expression in multiple muscle-resident cell types of patients with DMD. Given that givinostat is paving the way for HDACi-based interventions in DMD, next-generation HDACis with optimized therapeutic profiles and efficacy could be also explored for synergistic combinations with other therapeutic strategies.


Subject(s)
Muscular Dystrophy, Duchenne , Mice , Animals , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Muscle, Skeletal/metabolism , Mice, Inbred mdx , Dystrophin/metabolism , Signal Transduction
17.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38383972

ABSTRACT

Rare muscular disorders (RMDs) are disorders that affect a small percentage of the population. The disorders which are attributed to genetic mutations often manifest in the form of progressive weakness and atrophy of skeletal and heart muscles. RMDs includes disorders such as Duchenne muscular dystrophy (DMD), GNE myopathy, spinal muscular atrophy (SMA), limb girdle muscular dystrophy, and so on. Due to the infrequent occurrence of these disorders, development of therapeutic approaches elicits less attention compared with other more prevalent diseases. However, in recent times, improved understanding of pathogenesis has led to greater advances in developing therapeutic options to treat such diseases. Exon skipping, gene augmentation, and gene editing have taken the spotlight in drug development for rare neuromuscular disorders. The recent innovation in targeting and repairing mutations with the advent of CRISPR technology has in fact opened new possibilities in the development of gene therapy approaches for these disorders. Although these treatments show satisfactory therapeutic effects, the susceptibility to degradation, instability, and toxicity limits their application. So, an appropriate delivery vector is required for the delivery of these cargoes. Viral vectors are considered potential delivery systems for gene therapy; however, the associated concurrent immunogenic response and other limitations have paved the way for the applications of other non-viral systems like lipids, polymers, cellpenetrating peptides (CPPs), and other organic and inorganic materials. This review will focus on non-viral vectors for the delivery of therapeutic cargoes in order to treat muscular dystrophies.


Subject(s)
Muscular Atrophy, Spinal , Muscular Dystrophy, Duchenne , Nucleic Acids , Humans , Rare Diseases/drug therapy , Rare Diseases/genetics , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Muscles
18.
Adv Ther ; 41(4): 1338-1350, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38376743

ABSTRACT

Duchenne muscular dystrophy (DMD) is one of the most prevalent X-linked inherited neuromuscular disorders, with an estimated incidence between 1 in 3500 and 5000 live male births. The median life expectancy at birth is around 30 years due to a rapid and severe disease progression. Currently, there is no cure for DMD, and the standard of care is mainly palliative therapy and glucocorticoids to mitigate symptoms and improve quality of life. Recent advances in phosphorodiamidate morpholino antisense oligonucleotide (PMO) technology has proven optimistic in providing a disease-modifying therapy rather than a palliative treatment option through correcting the primary genetic defect of DMD by exon skipping. However, as a result of the high variance in mutations of the dystrophin gene causing DMD, it has been challenging to tailor an effective therapy in most patients. Viltolarsen is effective in 8% of patients and accurately skips exon 53, reestablishing the reading frame and producing a functional form of dystrophin and milder disease phenotype. Results of recently concluded preclinical and clinical trials show significantly increased dystrophin protein expression, no severe adverse effects, and stabilization of motor function. In summary, viltolarsen has provided hope for those working toward giving patients a safe and viable treatment option for managing DMD. This review summarizes an overview of the presentation, pathophysiology, genetics, and current treatment guidelines of DMD, pharmacological profile of viltolarsen, and a summary of the safety and efficacy with additional insights using recent clinical trial data.


Subject(s)
Muscular Dystrophy, Duchenne , Infant, Newborn , Humans , Male , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Quality of Life , Oligonucleotides/therapeutic use
20.
Neurology ; 102(5): e208112, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38335499

ABSTRACT

BACKGROUND AND OBJECTIVES: Vamorolone is a dissociative agonist of the glucocorticoid receptor that has shown similar efficacy and reduced safety concerns in comparison with prednisone in Duchenne muscular dystrophy (DMD). This study was conducted to determine the efficacy and safety of vamorolone over 48 weeks and to study crossover participants (prednisone to vamorolone; placebo to vamorolone). METHODS: A randomized, double-blind, placebo-controlled and prednisone-controlled clinical trial of 2 doses of vamorolone was conducted in participants with DMD, in the ages from 4 years to younger than 7 years at baseline. The interventions were 2 mg/kg/d of vamorolone and 6 mg/kg/d of vamorolone for 48 weeks (period 1: 24 weeks + period 2: 24 weeks) and 0.75 mg/kg/d of prednisone and placebo for the first 24 weeks (before crossover). Efficacy was evaluated through gross motor outcomes and safety through adverse events, growth velocity, body mass index (BMI), and bone turnover biomarkers. This analysis focused on period 2. RESULTS: A total of 121 participants with DMD were randomized. Vamorolone at a dose of 6 mg/kg/d showed maintenance of improvement for all motor outcomes to week 48 (e.g., for primary outcome, time to stand from supine [TTSTAND] velocity, week 24 least squares mean [LSM] [SE] 0.052 [0.0130] rises/s vs week 48 LSM [SE] 0.0446 [0.0138]). After 48 weeks, vamorolone at a dose of 2 mg/kg/d showed similar improvements as 6 mg/kg/d for North Star Ambulatory Assessment (NSAA) (vamorolone 6 mg/kg/d-vamorolone 2 mg/kg/d LSM [SE] 0.49 [1.14]; 95% CI -1.80 to 2.78, p = 0.67), but less improvement for other motor outcomes. The placebo to vamorolone 6 mg/kg/d group showed rapid improvements after 20 weeks of treatment approaching benefit seen with 48-week 6 mg/kg/d of vamorolone treatment for TTSTAND, time to run/walk 10 m, and NSAA. There was significant improvement in linear growth after crossover in the prednisone to vamorolone 6 mg/kg/d group, and rapid reversal of prednisone-induced decline in bone turnover biomarkers in both crossover groups. There was an increase in BMI after 24 weeks of treatment that then stabilized for both vamorolone groups. DISCUSSION: Improvements of motor outcomes seen with 6 mg/kg/d of vamorolone at 24 weeks of treatment were maintained to 48 weeks of treatment. Vamorolone at a dose of 6 mg/kg/d showed better maintenance of effect compared with vamorolone at a dose of 2 mg/kg/d for most (3/5) motor outcomes. Bone morbidities of prednisone (stunting of growth and declines in serum bone biomarkers) were reversed when treatment transitioned to vamorolone. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT03439670. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for boys with DMD, the efficacy of vamorolone at a dose of 6 mg/kg/d was maintained over 48 weeks.


Subject(s)
Muscular Dystrophy, Duchenne , Pregnadienediols , Humans , Male , Biomarkers , Muscular Dystrophy, Duchenne/drug therapy , Prednisone/adverse effects , Pregnadienediols/adverse effects , Child, Preschool , Child
SELECTION OF CITATIONS
SEARCH DETAIL
...